cubature - определение. Что такое cubature
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое cubature - определение

FAMILY OF ALGORITHMS FOR FINDING THE DEFINITE INTEGRAL OF A FUNCTION
Numerical Integration; Numerical quadrature; Squaring of curves; Cubature; Integral approximation; Integration point; Numerical integration (quadrature); Quadrature rules; Approximate integration; Numeric integration
  • Antique method to find the [[Geometric mean]]
  • The area of a segment of a parabola}}

cubature         
['kju:b?t??]
¦ noun the determination of the volume of a solid.
Cubature         
·noun The process of determining the solid or cubic contents of a body.

Википедия

Numerical integration

In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral, and by extension, the term is also sometimes used to describe the numerical solution of differential equations. This article focuses on calculation of definite integrals.

The term numerical quadrature (often abbreviated to quadrature) is more or less a synonym for numerical integration, especially as applied to one-dimensional integrals. Some authors refer to numerical integration over more than one dimension as cubature; others take quadrature to include higher-dimensional integration.

The basic problem in numerical integration is to compute an approximate solution to a definite integral

a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx}

to a given degree of accuracy. If f(x) is a smooth function integrated over a small number of dimensions, and the domain of integration is bounded, there are many methods for approximating the integral to the desired precision.